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The propagation of periodic axial sound waves in gases contained in circular

cylindrical structures is a function of four parameters: s = R/ p-w/u, the shear
wave number or Stokes number, k = w* R/c, known as the reduced frequency,
o = /1 C,/4, the square root of the Prandtl number and y = C,/C,, the ratio of
specific heats. The complete Kirchhoff solution of the sound propagation in tubes
problem obtained in 1868 was expressed in terms of these parameters by Tijdeman
[1]. In previous works [1, 2] the complex propagation constant was obtained by
solving this expression. The results were presented for a limited range in reference
[1] and for a broader range in reference [2] but in both cases only for a single fluid,
air. In this work the results of a computer code to solve for this propagation
constant are presented. The code was used to find the propagation constants
(attenuation and phase-shift coefficients) in the range 5 < s < 5000, 0-01 < k < 6,
0-8 <6 < 1-1and 1-0 <y < 1-7. This range of conditions covers most conditions of
interest. The data was then used to fit an equation to express the attenuation and
phase-shift coefficients in terms of simpler polynomial-type expressions as a
function of these four parameters. A set of tables to obtain the values of the
attenuation and phase shift coefficients for values of these four non-dimensional
parameters in the above range is also presented. Sound attenuation measurements
using superheated R134a refrigerant agrees reasonably well with the computed
attenuation in the plane wave region.

© 2000 Academic Press

1. INTRODUCTION

Sound attenuation of small amplitude acoustic oscillations in tubes with circular
cross-section is a classical problem of acoustics. Kirchhoff solved this problem in
1868 [3]. Kirchhoff was able to derive the complete solution to the problem from
basic equations but the attenuation coefficient was imbedded in a very complicated
transcendental equation.

For almost a century after Kirchhoff’s derivation only analytical
approximations of his complete solution, in conjunction with other solutions
obtained when simplifying assumptions were introduced in the original
fundamental equations, were used to estimate the propagation constants.
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Shields et al. [4] were the first to numerically solve the original Kirchhoff
formulation. Tijdeman [1] determined that the attenuation inside tubes depended
on four non-dimensional parameters: s = R/ p-®/u, the shear wave number or
Stokes number, k = @ R/c, known as the reduced frequency, ¢ = \/u- C,/4, the
square root of the Prandtl number and y = C,/C,, the ratio of specific heats. (A list
of symbols is included in Appendix B). Two of these parameters (¢ and y) can
often be considered to remain constant for a given fluid. He then rewrote the
transcendental equation in a form which incorporated these non-dimensional
parameters and solved the resulting equation for a limited range of conditions for
air. Page and Mee [2] extended Tijdeman’s work to cover conditions more
representative of practical applications by solving Kirchhoff’s solution by the
Newton-Raphson method as presented in reference [1] to cover all possible
conditions of interest. They used polynomials to fit the results and present them in
a simple way. The limitation of this work is that the solutions presented are only for
air.

Work related to noise in expansion devices and plate evaporators [5-§]
currently underway at the Air Conditioning and Refrigeration Center (ACRC) at
the University of Illinois required a special experimental set-up to perform acoustic
measurements in refrigerant (R134a). This work required the solution of the
transcendental Kirchhoff propagation equation for superheated R134a refrigerant
inside a tube so that a suitable test section could be designed to make accurate
measurements of expansion device generated noise.

A very simple program implemented in Mathematica v 3-0" was created to solve
Kirchhoff’s transcendental equation for the propagation constants (attenuation
and phase shift coefficients) given any values of the four relevant parameters k, s, o,
and y*. A set of tables that cover the range 5 <s < 5000, 0-01 <k <6,
0-8 <o < 1-1,and 1-0 < y < 1-7 is also included in Appendix A. This covers a very
wide range of conditions and gases. Using a larger version of these tables, simple
polynomial-type expressions were fitted to allow easy determination of the values
of the propagation constants given k, s, ¢, and 7.

2. ATTENUATION MECHANISMS AND FORMULATION OF THE PROBLEM

The two most important mechanisms of sound attenuation in circular cylindrical
tubes are due to the effects of viscosity and heat conduction. The effects of viscosity
and conductivity on sound propagation in an open medium, (for example sound
waves in air), are much less significant than inside a tube due to the boundary
conditions imposed by the tube [9]. There are other mechanisms that contribute to
the attenuation of sound in tubes, for example turbulence and convective effects.
These mechanisms are present when the fluid inside the pipe is moving (i.e., when

fMathematica Software Package version 3, Wolfram Research, Inc., 100 Trade Center Drive,
Champaign, IL 61820, U.S.A. http://www.wolfram.com

*For copies of this program contact the main author or download it from the Journal of Sound and
Vibration web page. (http://www.academicpress.com/jsv)
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there is a pressure gradient), but these effects seem to be less important than the
visco-thermal effects especially when flow velocities are relatively low.

The equations necessary to describe the complete fluid mechanics effects and
interactions between the most important parameters of interest (velocity, pressure,
temperature, viscosity, and density) are the Navier-Stokes equations, the
continuity equation, the equation of state, and the energy equation. Kirchhoff
solved this coupled set of equations by introducing the assumption of sinusoidially
fluctuating variables. A very detailed description of this solution is presented in
reference [3]. The solution of the set of equations is in the form of a complex
transcendental equation. This equation was rearranged in reference [1] and is

shown below:
2\ —1/2 1 1 J 1
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The assumptions utilized in this solution are (1) homogeneous (continuum)
medium, (2) small-amplitude sinusoidal disturbances, (3) no reflections (infinitely
long tube), (4) axisymmetric disturbances, (5) no steady flow, and (6) no temperature
gradient in the fluid. Additional boundary conditions at the rigid tube walls include
zero radial and axial velocity. At the tube axis, the boundary condition is zero
radial velocity due to axisymmetry. The tube wall conductivity is also assumed
large in comparison with fluid heat conductivity. Z is related to the propagation
constant I" as shown in equations (2). I" is related to the acoustic pressure as shown
in equation (4). The acoustic pressure is

Pac = (A €™ + B-e ~")e", 4)

where ¢ = w-x/c, and A and B are functions of radius that cancel out when
comparing sound attenuation in a tube at different points.

The solution of the Kirchhoff formulation for the attenuation coefficient is valid
only when plane waves are being propagated inside the tube. This condition is met
only for values of the reduced frequency k less than 1-841. There are many practical
situations in which it is necessary to know the propagation characteristics of higher
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order modes in tubes. For this reason, Page and Mee [2] solved equation (1) for
values of k up to six. They stated that results obtained for values of the reduced
frequency greater than 1-841 would apply only to axisymmetric disturbances and as
such would provide a lower bound limit for the attenuation of the longitudinal
disturbance in the tube [2]. Bruneau et al. [9] show a formulation useful to
determine higher order modes attenuation coefficients. Their results show that
most higher order modes attenuate more rapidly than plane waves.

3. NUMERICAL ANALYSIS

Equation (1) was solved following the scheme presented in reference [1].
Basically, this consists of using the iterative Newton-Raphson procedure outlined
by

F{Z,»
CF{Zy

Lyv1=2, (5)

In equation (5), F<{Z,) is equivalent to equation (1), and F’{Z,), the derivative of
equation (1) with respect to Z is
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The Newton-Raphson procedure needs an initial value of Z to start the iterative
process. This initial value of Z is provided in the code by using an approximate

solution to the problem. The approximate solution used is known as the low
reduced frequency solution was obtained by Zwikker and Kosten in 1949 upon the
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introduction of some simplifying assumptions to the fundamental equations [1].
The equations necessary for this initial value of Z are

[Jo(2s5) [y y —1J,(3%gs)
= J2(i*?%5) " n=|1+ y Jo(**os) | Zitiar = I @

4. NUMERICAL RESULTS

The computer code was developed using the Mathematica version 3-0 software
package. A copy of the code can be obtained from the authors or on the world wide
web (see footnote 7). A very complete set of tables presenting solutions for the
attenuation coefficients I and phase shift coefficient I'” (real and imaginary parts of
the complex propagation constant I', respectively) are also presented in Appendix
A for different values of k, s, o, and y. The first column of the tables shows values for
air which agree with previously published results [2]. Following the approach
presented in reference [2], a polynomial-type equation was fitted to the data in an
effort to simplify the procedure. The objective is to find an expression that
represents the propagation constants I'" and I'” as a function of s, k, g, y. The best
expressions found so far are

0\ 2 W\ 4
I' = 0'2436601(%) + 0‘8282861<%> — 0'77198<%>
o

Y 7\ 7\ 7\*
+ 0-4669814<g> + 0-07406207<E> + 5-932751<§> — 14-598(;) .9

, Y ky\? ky\*
I" = 0:9999991 + 0-1998062( = | — 0074551 (= ) — 0-95698

s
2 3 4
+ 0-5094442@ + 0-1713677@ ¥ 2-5842@ + 5-376701(2) . (10)

Equation (9) gives an average error of 2:3% over the 6464 data points used to fit
it. The matrix of data used to fit the equation is an extended version to the tables
presented in Appendix A. The full set of tables is not presented due to space
limitations.” Equation (9) performs quite well as Figure 1 shows. Figure 1 shows
comparisons of the exact results obtained using equation (1) for air (y = 14,
g = 0-842) to those obtained with equation (9). It should be pointed out that air
data was not used to fit equation (9). When equation (9) was used with air for the
points in Table 1 (presented in Appendix A), the maximum error was found at
s =35 k=6 and was 2:4% and the average error is only 1-2%. Using an
approximation by Kirchhoff (wide tube approximation) presented in Table 1 of

TFor copies of the excel file with the full set of data contact the main author or download it from the
Journal of Sound and Vibration web page http://www.academicpress.com/jsv.
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Figure 1. Comparison of polynomial fit (equation (9)) to exact results obtained from equation (1)
for air: W, I"" exact; A, I'” fitted.

reference [ 1] and in reference [10] shows that the average error for the same 6464
points is 11:6%. The maximum errors for equation (9) and the Kirchhoff
approximation over this range are 167 and 72-7% respectively.

Equation (10) showing the phase shift coefficient was fitted using a similar
procedure. In this case the average and maximum errors over the 6464 points used
to fit the equation are 0-04 and 1-6% respectively.

The purpose of equations (9) and (10) is to simplify computations. The most
accurate way of solving for the propagation constant is to solve equation (1) using
a numerical procedure such as the one outlined here. This numerical procedure, in
our case, was implemented using the Mathematica software package since it has the
capability of solving for the complex argument transcendental functions and
because it was readily available to us. However, it may not be very practical to
link this program to others, hence the need of simple equations like equation (9)
and (10).

5. EXPERIMENTAL RESULTS

Work on noise from different air conditioning components [5-8] using
refrigerant R134a lead us to this investigation of the visco-thermal sound
attenuation in tubes. Kirchhoff’s complete solution to the problem was obtained
using the ideal gas equation of state. Refrigerants do not behave like ideal gases at
normal superheated conditions. Tests reported here for sound attenuation in
refrigerant R134a spanned a range of superheats between 12 and 28°C. These levels
of superheat are not large enough that the refrigerant could be considered to
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Figure 2. Experimental set-up used for studies of expansion device noise in refrigerant and where
sound attenuation measurements were made. Tube dimensions 0-5 in OD (12-70 mm), 0-415 in ID
(10-54 mm).

behave like an ideal gas. For this reason an error analysis was performed with the
non-dimensional linearized version of the equation of state that is used to obtain
the Kirchhoff’s solution as shown in Tijdeman’s paper. This equation is

P,=T,+ pa (11)

The above expression can be obtained when the total value of the pressure,
temperature and density (the static and sinusoidally oscillating components) are
introduced in the ideal gas equation of state. In the above equation P,, T, and
p, are the acoustic magnitudes non-dimensionalized by their respective static
component. An acoustic perturbation was introduced and then the values of T, and
p. were estimated using a real gas equation of state. The non-dimensionalized
temperature and density acoustic perturbations obtained in this way were then
compared to the initial acoustic perturbation introduced. The thermodynamic
properties of refrigerant R134a were estimated using the Engineering Equation
Solver (EES) software package version 5-002" that uses the Martin-Hou equation
of state [11] based on thermodynamic information from McLinden et al. [12] for
refrigerant R134a. The discrepancy found for R134a refrigerant at 578 kPa and
33°C is 82%. The error was not sensitive to the magnitude of the acoustic
perturbation. For large superheats, say 150°C, the error is of the order of 2%. These
error levels are approximately the same as those obtained for the speed of sound
and density using ideal and real gas equations of state. In spite of this, sound
attenuation measurements compare relatively well with theoretical predictions as
can be seen in Figure 3.

Noise attenuation measurements were made in an experimental set-up built for
noise studies of expansion devices (thermostatic expansion valves, orifice tubes, and
capillary tubes) used in refrigeration and air conditioning systems [8]. Very long
tube coils were used in the experimental set-up so that the visco-thermal

TEngineering Equation Solver (EES) Software Package version 5.002, F-chart Software, 4406 Fox
Bluff Rd. Middleton WI 53562, U.S.A. http://www.fchart.com
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Figure 3. Sound attenuation measurements between microphone blocks separated by a 7:24 m
coiled tube with 0-415in (10-54 mm) ID. Fluid used is R134a refrigerant gas at P = 578 bar,
T =33°C, ¢=150-8m/s. The first cut-off frequencies for this case are: (1,0)= 8385 Hz,
(2,0) = 13910 Hz, (0, 1) = 17450 Hz, (3,0) = 19132 Hz. , Experientally measured; €, estimated
(wide tube approximation); *, estimated (exact formulation).

attenuation through them would eliminate most of the acoustic reflections
and practically provide for an anechoic termination. By doing this, a good
characterization of expansion device noise could be achieved. Figure 2 shows the
section of the set-up where the sound pressure and attenuation measurements were
performed. A description of the complete experimental facility that shows in more
detail the way in which the refrigerant is conditioned prior to enter the test section
and after leaving the test section can be seen in references [8, 6].

The test section consists of an expansion device (Figure 2 shows an orifice tube),
several microphone blocks (where the internal acoustic pressure was measured),
and a set of very long tube coils. Refrigerant is fed into the orifice tube at a specified
pressure and temperature or quality. The refrigerant, after passing through the test
section, goes back to the system where it is condensed and reconditioned before
returning to the test section.

The microphone blocks each hold two microphones. Even with the introduction
of the extremely long tube sections low-frequency reflections are difficult to
attenuate and the two-microphone technique is needed to account for low-
frequency reflections (below 1 kHz) [8, 13].

Sound attenuation measurements were made by comparing readings of the noise
at different positions in the test section. An HP3562A dynamic signal analyzer was
used to process the signals from the dynamic pressure transducers that were placed
in the microphone blocks shown in Figure 2. PCB model 105B02 dynamic pressure
transducers were used. These transducers have a sensing tip of 0-1” (2:5 mm)
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diameter and a resonance frequency of 250 kHz. The dynamic pressure transducers
have a sensitivity of approx. 5-8 mV/kPa (40 mV/psi). These sensors are not very
sensitive due to their small size. However, the expansion valve noise is typically
35-60 dB/\/ Hz greater than the instrumentation noise. The sensor deviation from
linear behavior or linearity is reported by the manufacturer to be less than 2% of
full scale. This translates to a maximum error in the measurement presented of the
order of 04 dB/\/ Hz. These sensors where selected since they are capable of
measuring the acoustic pressures on top of the relatively high static pressures seen
in the low-pressure side of R134a refrigeration systems operating under typical
conditions. Another important characteristic of these sensors is their size, which
permit measurements inside of pipes of small diameter.

Figure 3 compares the sound attenuation measured when superheated R134a
refrigerant flows through the test section to sound attenuation estimated using
equation (1) and the wide tube approximation by Kirchhoff [1, 10].

Figure 3 shows good agreement between experimental measurements and
theoretical results in most of the plane wave region. The noise source used during
these measurements in an orifice tube (1-7 mm inside diameter, and 38-1 mm long).
Typically, the sound pressure levels generated by this device for a number
of different conditions of interest (when superheated refrigerant exits the orifice)
are of the order of 100-130 dB/\/ Hz relative to 20E-6 Pa and the internal sound
pressure spectrum remains basically constant at this level over the audible
frequency range. Instrumentation noise varies almost linearly from around
75dB/./Hz at lower frequencies down to about 60dB/./Hz at 20 kHz.
Since instrumentation noise approximately an order of magnitude greater at
lower frequencies than at higher frequencies the signal to noise ratio at
low frequencies will be smaller than at higher frequencies. Still the signal is
close to two orders of magnitude larger at lower frequencies than the
instrumentation noise.

The flow rate of refrigerant for the test presented in Figure 3 is 17-52 g/s
(139-:02 1b/h). This translates to an average flow velocity of 7-6 m/s or a Mach
number of the flow of 0-05. This particular case represents a higher end flow
velocity seen during our experiments. Measurements of sound attenuation in the
test section under different conditions and at Mach numbers between 0-03 and 0-05
do not deviate from the results shown in Figure 3. However, mean flow can have an
effect in the sound propagation in tubes as shown by some researchers [ 14-16].
Temperature gradients can also have an effect. In our experiments, the largest
temperature gradients are of the order of 0-6°C/m with typical values less than this.
In this work the temperature gradients effects are neglected. In cases of significant
temperature gradients, Peat [17] presents a formulation which considers
temperature gradient effects on sound propagation.

Figure 4 shows the experimental attenuation measurements of two data points
taken. It is difficult to discriminate between the different curves. Figure 4 shows the
repeatability of the experimentally measured sound attenuation.
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Figure 4. Sound attenuation measurements between microphone blocks separated by a 7-24 m
coiled tube with 0-415in (10-54 mm) ID. Fluid used is R134a refrigerant gas. ——, P = 578 kPa,
T = 33°C, mass flow = 17-52 g/s; ----, P = 567 kPa, T = 45°C, mass flow = 13-18 g/s.

6. CONCLUSIONS

« The complex transcendental equation that describes the attenuation of sound
waves in tubes due to visco-thermal effects was solved using a simple code (see
footnote ) created using readily available software (see footnote ).

« The code was validated using previously published results for air and then used to
create tables which are presented in Appendix A. The tables cover the range
5<s<5000,00l <k<6,08<o<11land 10<y <17

« Polynomial-type equations involving the relevant parameters were fitted in order
to provide an alternative method calculation of the attenuation coefficient
(Re{I'}) and phase shift coeflicient (Im{I'}).

» Sound attenuation measurements of the sound propagating inside tubes for
superheated R134a refrigerant agrees reasonably well with theory in the plane
wave region. The superheat during our tests was not high enough that the
refrigerant could be considered to behave as ideal gases. In spite of this the model
predicts relatively well in the plane wave region.

» There are other dissipation mechanisms. However, for the case reported in this
paper visco-thermal attenuation seems to be the dominant mechanism.
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E. RODARTE ET AL.
APPENDIX B: NOMENCLATURE

constants associated with equation (4)
auxiliary variables

speed of sound

constant pressure specific heat

constant volume specific heat

—1

Bessel function of the first kind of order m
reduced frequency

iteration number in equation (5), auxiliary variable in equation (7)
pressure

acoustic pressure

non-dimensionalized acoustic pressure
internal tube radius

Stokes number or shear wave number
temperature

non-dimensionalized acoustic temperature
propagation constant squared

ratio of specific heats

propagation coefficient

attenuation coefficient (Re{I'})

phase shift coefficient (Im{I'})

w-x/c

square root of Prandtl number

thermal conductivity

mean density

non-dimensionalized acoustic density
absolute fluid viscosity

frequency (rad/s)

auxiliary variables
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